As mouse geneticists, we spend a lot of time waiting for mice to make more mice. Their small size, ease of care and willingness to mate have made mice the “mammal of choice” for scientists for more than a century. Indeed, these wriggly fur balls that strike fear in the hearts of some are owed a debt of gratitude for all they’ve taught researchers about human health and how mammalian bodies are built and function.
In our lab we use mice to understand how limbs evolved. In particular, we’re fascinated by the genetic changes made over tens of millions of years since the first four-legged animal flopped out of water and onto land. It is remarkable that the dolphin’s fin and the bat’s wing, for example, are derived from a common ancestor. Our aim is to discover which of the differences in their DNA caused dramatic changes in the shapes of different mammals. Specifically, we work with a small, desert-dwelling rodent called the jerboa, which has almost absurdly long hind limbs. One very powerful strategy to understand the jerboa’s enormous feet would be to engineer a mouse with jerboa limb development genes and see if those genetic changes make a mouse with longer legs.
But if we want to understand the complicated genetic history of the evolution of the jerboa limb, we need to study several genes at once. This causes a problem similar to that of biomedical researchers working with mice to understand human genetic diseases. Although mice and humans are similar in many ways and are vulnerable to some of the same genetic diseases, our most common diseases are caused by more than one gene.
…continue reading ‘Gene Drive Technology Makes Mouse Offspring Inherit Specific Traits from Parents’
Image: By Pogrebnoj-Alexandroff – open free cources, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=44440744
Be the first to like.
The Conversation