Be the first to like.

Share

An international collaborative study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP), with major participation from Yokohama School of Medicine, Harvard Medical School, and UC San Diego, has identified the molecular mechanism behind lithium’s effectiveness in treating bipolar disorder patients.
The study, published in Proceedings of the National Academy of Sciences (PNAS), utilized human induced pluripotent stem cells (hiPS cells) to map lithium’s response pathway, enabling the larger pathogenesis of bipolar disorder to be identified. These results are the first to explain the molecular basis of the disease, and may support the development of a diagnostic test for the disorder as well as predict the likelihood of patient response to lithium treatment. It may also provide the basis to discover new drugs that are safer and more effective than lithium.
Bipolar disorder is a mental health condition causing extreme mood swings that include emotional highs (mania or hypomania) and lows (depression) and affects approximately 5.7 million adults in the U.S. Lithium is the first treatment explored after bipolar symptoms, but it has significant limitations. Only approximately one-third of patients respond to lithium treatment, and its effect is only found through a trial-and-error process that takes months—and sometimes years—of prescribing the drug and monitoring for response. Side effects of lithium treatment can be significant, including nausea, muscle tremors, emotional numbing, irregular heartbeat, weight gain, and birth defects, and many patients choose to stop taking the medicine as a result.

 

Be the first to like.

Share
Medical Xpress

Leave a Reply